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Ancestral cells in two-dimensional soap froth
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~Received 1 July 1997!

From the evolution of the ancestral cells in two-dimensional soap froth, we find that the ancestral cell mean
area^Aan& decreases and the mean number of edges^nan& increases nonlinearly backwards in time. Unlike
surviving cells, there is no sign of fixed point for the ancestral cells in our experiment. Also, the normalized
mean areâAan(t)&/^Aan(t f)& and mean number of edges^nan(t)& form scaling functions independent oft f

.t with the normalized mean area^A(t)&/^A(t f)& of the whole froth. These results agree with a dynamical
simulation for two-dimensional soap froths.
@S1063-651X~98!15206-6#

PACS number~s!: 82.70.Rr, 02.50.2r, 05.70.Ln
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Cellular structures such as metal grains and biological
sues are common in nature@1#. Among these systems, soa
froth is particularly interesting for the study of the evolutio
of patterns because of the simplicity and relative ease o
experimental setup@2–5#. More importantly, the soap froth
is a nonequilibrium system driven by gas diffusion th
evolves to a universal scaling state widely observed in o
nonequilibrium cellular systems. The topological propert
of soap froths have now been well studied experiment
and good agreements with theories and simulations h
been reported@5–8#. However, the study of the dynamics h
been limited despite the confirmation of the linear grow
rate for the mean bubble area and the dynamical scaling
@1,7,9#. Currently, soap froths have again attracted much
terest due to recent studies of surviving cells~survivors!
@10–12# and first-passage exponent@13–15# in two-
dimensional soap froths. Studies of survivors have claim
the existence of a fixed point characterized by a station
distribution of numbers of edges for the survivors@10–12#.
The existence of a fixed point for survivors is nonintuiti
and deserves detailed confirmation@16#. In this paper, in-
stead of tracking the survivors, we measure the propertie
ancestral cells~ancestors! of the bubbles taken at final timet f
by following them backwards in time within the scaling sta
571063-651X/98/57~6!/7354~4!/$15.00
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of the froth. We find that the normalized mean area a
mean number of edges of the ancestors form scaling fu
tions of the normalized mean area for the whole froth, ind
pendent of the final timet f . More importantly, the data do
not seem to reach any fixed point as observed previousl
the studies of survivors@10–12#. We also have performed
dynamical simulations for the two-dimensional soap fro
and the results agree well with the experiment, sugges
that the fixed point may be reached only after a very lo
time if it exists at all.

We first clarify the difference between the survivors a
ancestors. In previous studies@10–12#, survivors were de-
fined as bubbles chosen from an initial state in the sca
regime at timet0 such that they survive until timet.t0. As
t is increased fromt0 to the final timet f , different bubbles
will be chosen as the survivors but they are allsubsetsof the
initial state. Thus, survivors arestatics. Here, ancestors ar
defined as the predecessors of the bubbles at the final timt f

and are chosen from states at various timest,t f . At a par-
ticular timet,t f , subset$San(t,t f)% of the froths$S(t)% at t
can be identified as the ancestors of the bubbles$S(t f)% be-
longing to the froth att f . In general, the number of edges
these ancestors$San(t,t f)% can be different from the bubble
FIG. 1. Images of soap froth taken at time~a!
150.0 h,~b! 61.17 h,~c! 29.67 h, and~d! 0.0 h.
The shaded cells are ancestors starting witht f5
150.0 h backward in time.
7354 © 1998 The American Physical Society
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in $S(t f)%. The concept of ancestors can be generalized
yond the scaling regime to the theoretical regime with
origin of time defined by the extrapolation of the linear tim
dependence of mean area to zero area. Therefore, one
treat the ancestors as primordial bubbles that exist since
origin of time. The evolution of the ancestors thus maps
the history of the bubbles from primordial time, where the
are infinitely many bubbles with vanishing area so that
total area corresponds to the area of the sample. The dyn
ics and topological properties of these ancestors are
different from those of the survivors which have no natu
time origin, but have the natural end of time att5`.

Our experimental setup has been reported recently
study of the first-passage exponent of the unswept are
two-dimensional soap froths@15#. The experiment started
with about 20 000 bubbles and had about 6000 in the sca
state, determined by monitoring the stationarity of the dis
bution of the number of edges. The experiment lasted for
week, with 197 bubbles at the end. A high-resolution char
coupled-device digital camera (103731344 pixels! was used
to capture images of the froth every 10 min during its ev
lution. The ancestors of the bubbles taken at a late stag
the froth were identified by following the bubbles frame
frame backwards in time. This was done automatically b
computer for most of the bubbles and manually for a few t

FIG. 2. ~a! Mean area of the ancestors^Aan(t)& vs the mean area
of the whole froth^A(t)& for t f5~open circles! 150.0 h,~open tri-
angles! 92.76 h, and~open squares! 70.5 h. ~b! Mean number of
edges of the ancestors^nan(t)& vs the mean area of the whole frot
^A(t)& for t f5~open circles! 150.0 h,~open triangles! 92.76 h, and
~open squares! 70.5 h.
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could not be identified by the computer. Bubbles that wa
dered in and out of the image frame during the course of
evolution were also excluded.

Figure 1 shows the ancestor evolution backwards in ti
starting from the latest timet f5150.0 h~a! with 181 ~surviv-
ing! bubbles to time~b! 61.17 h,~c! 29.67 h, and~d! 0.0 h,
where there are 2135 bubbles for the whole froth. T
shaded cells are the 181 ancestors of the surviving bubble
time t f5150.0 h. The temporal dependence of the mean a
^Aan(t)& and the mean number of edges^nan(t)& of these
ancestors are shown as open circles in Figs. 2~a! and 2~b!,
respectively. Here, we choose to use the mean area^A(t)& of
the whole froth as the time scale, since^A(t)& has linear time
dependence in the scaling state. Also shown in Fig. 2
results obtained usingt f592.76 h~open triangles! and t f5
70.50 h~open squares! with 280 and 354 surviving bubbles
respectively. All data sets show similar behaviors w
^Aan(t)& decreasing and̂ nan(t)& increasing nonlinearly
backwards in time. We find that both^Aan(t)& and^nan(t)&
form scaling functions as shown in Fig. 3 when rescal
The normalized mean area of ancestorsaan(t)
5^Aan(t)&/^Aan(t f)& is plotted, in logarithmic scales
against the normalized mean area of the whole frotha(t)
5^A(t)&/^A(t f)& for the threet f ’s in Fig. 2~a!. Data collapse

FIG. 3. ~a! Log-log plot of the normalized mean area of th
ancestorsaan(t) vs the normalized mean area of the whole fro
a(t) for t f5~open circles! 150.0 h,~open triangles! 92.76 h, and
~open squares! 70.5 h.~b! Mean number of edges of the ancesto
^nan(t)& vs the log of the normalized mean area of the whole fro
a(t) for t f5~open circles! 150.0 h,~open triangles! 92.76 h, and
~open squares! 70.5 h.
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is excellent. Good data collapse is also observed for
mean number of edges of the ancestors when plotted ag
the normalized mean area of the whole froth as shown in
3~b!. It is seen in Fig. 3~a! thataan(t) decreases more slowl
backwards in time thana(t), resulting inaan(t)/a(t) larger
than one for all times in the past. Furthermore, the dep
dence ofaan(t) upon a(t) as shown in Fig. 3~a! can be
approximated by a power law for a long time into the pa
The exponent for the power law is estimated to be 0.83 us
the last portion of the longest data set. However, this valu
expected to increase for longer data sets. It can be seen
Fig. 3~b! that ^nan(t)& increases from 6.0 att f to 8.0 for the
earliest time. Furthermore, it does not seem to reach a
tionary value as one goes backward in time. This is s
ported by the distribution function of the number of edg
for the ancestorsf an(n) as shown in Fig. 4 for the images i
Fig. 1. It is clear that the distribution shifts continuously
highern as one goes further into the past. The distribution
the earliest state is similar to previous results with surviv
@10–12# except that ours has a narrower distribution ran
The results indicate that only bubbles with many edges
large areas are likely to survive long.

We use a recent dynamical model to simulate the tw
dimensional soap froth@17#. This model is quite efficient and
has been shown to produce the correct dynamics for t
dimensional froths@18#. The simulation started with 500
bubbles and was stopped when there were about
bubbles. The ancestors of the bubbles starting at diffe
timest f were followed backwards in time in the scaling sta
to the earliest time with about 2000–3000 bubbles. Detail
the simulation can be found in Refs.@17,18#, and results will
be reported in another paper on survivors@16#.

The solid lines in Figs. 3~a! and 3~b! are, averaged ove
five runs from the simulation, the normalized mean a
aan(t) and the mean number of edges^nan(t)& of the ances-
tors plotted as a function of the normalized mean areaa(t)
for the whole froth. The agreement with experimental resu
is excellent. A power-law fit foraan(t) versusa(t) gives an
exponent of 0.9160.02, slightly larger than that of the ex

FIG. 4. Distribution of the number of edges for the ancestors
shown in Fig. 1. The corresponding symbols for Figs. 1~a!, 1~b!,
1~c!, and 1~d! are solid triangles, open squares, solid diamonds,
open circles, respectively. Also shown is the distribution at the e
liest time obtained from the dynamical simulation~solid circles!.
The lines are guides to the eyes.
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periment, using data points witha(t) less than 0.1. It is also
clear from Fig. 3~b! that^nan(t)& still increases with decreas
ing a(t), indicating that the simulations have not reached
stationary fixed point as reported for the survivors. This
further supported by the continuous shifting of the distrib
tion of nan(t) to highern, similarly to the experimental re
sults. The distribution for the earliest time from the simu
tion is shown as solid circles in Fig. 4. The distribution h
highern values than the experiment but is slightly ‘‘behind
the previous simulation@11,12#, due to the fact that the pre
vious simulation had more bubbles and lasted longer.

From our data on ancestors, we find that there is a nat
time scale for testing the existence of a fixed distributi
f an(n), namely, the time at the infinite past should have
vanishing point̂ A(t52`)& where the number of bubbles i
infinite. Although experimentally this is not achievable, th
time scale is well defined and a measure from this time sc
is given by the value of̂ A(t)&. A question concerning a
fixed distribution at infinite past is whether there is, first
all, the existence of a finite value ofn! such that it is the
mean number of edges of the ancestors at infinite pas
second question is whether the variance of the ancestor
tribution is finite or zero at infinite past. Our data indicat
that the answer to the first question is likely to be negati
This is quite physical and intuitive, since the existence o
finite n! for the ancestors in the infinite past implies th
there is a special topological reason in the dynamics of s
froth evolution that fixes such a finite value ofn!, and this is
quite unlikely because the fundamental dynamics is v
Neumann’s law@1#, which has only one special topologica
class:n56, fixed by the Euler theorem in two-dimension
Euclidean space. Sincen! increases as we trace our ance
tors backwards in time, the logical conclusion from our da
is to say thatn!5`. This is supported by a slightly negativ
exponent obtained for a power-law fit of^nan(t)& versus
a(t) for both experiment and simulation. Now,n!5` cor-
responds to circular bubbles, implying that the only primo
dial ancestors that exist for all times are those with an infin
number of edges. The second question is more subtle,
addresses the shape of the ancestor distribution. There
two scenarios:~1! the variance of the ancestor distributio
decreases, but asymptotically to a finite value, or~2! the
decreasing variance asymptotically vanishes. These
cases are difficult to test experimentally, but they corresp
to two different possibilities with distinct physical implica
tions. In the first case, the ancestor distributions are sim
moving towards higher values ofn as one goes further into
the past, but the shape of the distribution as measured by
variance is preserved. In the second case, the ancestor d
butions converge to ad distribution. At this point, our data
cannot distinguish these two cases, but certainly an ans
will give us more insights into the evolution of soap froth
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